69 research outputs found

    Evaluation of Croatian Word Embeddings

    Full text link
    Croatian is poorly resourced and highly inflected language from Slavic language family. Nowadays, research is focusing mostly on English. We created a new word analogy corpus based on the original English Word2vec word analogy corpus and added some of the specific linguistic aspects from Croatian language. Next, we created Croatian WordSim353 and RG65 corpora for a basic evaluation of word similarities. We compared created corpora on two popular word representation models, based on Word2Vec tool and fastText tool. Models has been trained on 1.37B tokens training data corpus and tested on a new robust Croatian word analogy corpus. Results show that models are able to create meaningful word representation. This research has shown that free word order and the higher morphological complexity of Croatian language influences the quality of resulting word embeddings.Comment: In review process on LREC 2018 conferenc

    Using climate information for drought planning

    Get PDF
    Historically, drought has been responded to rather than prepared for, yet studies have illustrated that proactive investment in drought risk management reduces impacts and overall response costs. One key element of preparedness is the use of sufficient climate information for monitoring, forecasting, and tracking long-term trends. In the face of a changing climate and increasing variability, these types of data are even more critical for planning and overall resiliency. The systematic use of these data to inform the drought planning component of drought risk management is a relatively recent development. Actionable science has direct applicability for planning and decision-making, and allows for an iterative process between scientists and end users that can build long-term drought resiliency. The article will describe how planners in Colorado are increasingly relying on climate data, ranging from paleoclimatological records to experimental seasonal forecasts, to guide their long-term drought preparedness and climate change adaptation efforts. This information can then be used to inform broader policy and planning efforts, unifying the scientific basis across multiple processes. In addition, the Integrated Drought Management Programme (IDMP), with the World Meteorological Organization (WMO) and the Global Water Partnership (GWP) as co-leads, promotes national policies encouraging proactive risk management, and provides a platform for sharing the lessons learned by the planners, policy makers, and scientists around the world. Data-driven decision-making using climate information can help depoliticize actions and increase overall resiliency and response in times of drought, which will be increasingly important as the world warms

    The very forward hadron calorimeter PSD for the future CBM@FAIR experiment

    Get PDF
    The Projectile Spectator Detector (PSD) of the CBM experiment at the future FAIR facility is a compensating lead-scintillator calorimeter designed to measure the energy distribution of the forward going projectile nucleons and nuclei fragments (reaction spectators) produced close to the beam rapidity. The detector performance for the centrality and reaction plane determination is re- viewed based on Monte-Carlo simulations of gold-gold collisions by means of four different heavy-ion event generators. The PSD energy resolution and the linearity of the response measured at CERN PS for the PSD supermodule consisting of 9 modules are presented. Predictions of the calorimeter radiation conditions at CBM and response measurement of one PSD module equipped with neutron irradiated MPPCs used for the light read out are discussed

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Using climate information for drought planning

    Get PDF
    Historically, drought has been responded to rather than prepared for, yet studies have illustrated that proactive investment in drought risk management reduces impacts and overall response costs. One key element of preparedness is the use of sufficient climate information for monitoring, forecasting, and tracking long-term trends. In the face of a changing climate and increasing variability, these types of data are even more critical for planning and overall resiliency. The systematic use of these data to inform the drought planning component of drought risk management is a relatively recent development. Actionable science has direct applicability for planning and decision-making, and allows for an iterative process between scientists and end users that can build long-term drought resiliency. The article will describe how planners in Colorado are increasingly relying on climate data, ranging from paleoclimatological records to experimental seasonal forecasts, to guide their long-term drought preparedness and climate change adaptation efforts. This information can then be used to inform broader policy and planning efforts, unifying the scientific basis across multiple processes. In addition, the Integrated Drought Management Programme (IDMP), with the World Meteorological Organization (WMO) and the Global Water Partnership (GWP) as co-leads, promotes national policies encouraging proactive risk management, and provides a platform for sharing the lessons learned by the planners, policy makers, and scientists around the world. Data-driven decision-making using climate information can help depoliticize actions and increase overall resiliency and response in times of drought, which will be increasingly important as the world warms

    Frost resistance of cement composites prepared on the basis of waste water from a concrete plant

    No full text
    This article presents the results of a research dealing with the use of waste water from concrete industry as a possible substitution of mixing water during the production of cement composites. This experimental research involved the preparation of two recipes of cement composites, named R1 and R3. Mixing water in these recipes was replaced with waste water from a concrete plant in the amount of 25, 50, 75 and 100%. Samples of recycled waste water, which were tested for the content of sulphates, chlorides and alkali according to ČSN EN 1008, were taken in order to determine the properties of waste water from a concrete plant. The prepared test specimens were tested for frost resistance after 100 freezing cycles according to ČSN 73 1322. The results of the frost resistance test showed that the required value of the frost resistance coefficient of 0.75 according to ČSN 73 1322 was achieved only in case of recipe R1 based on Portland cement CEM I 52.5R and 75 and 100% substitution of the mixing water with recycled water from a concrete plant

    The effect of CO2 on cement composites produced with an admixture of waste sludge water from a concrete plant

    No full text
    This article presents the results of a research dealing with the effect of CO2 on cement composites prepared on the basis of waste sludge water from the concrete plant. The designed formulas R1 and R3 use waste sludge water from the concrete plant as a partial or complete replacement of mixing water in the production of cement composites. The mixing water was replaced by waste sludge water in the amounts of 25%, 50%, 75% and 100%. Laboratory tests that are defined in ČSN EN 1008 standard were performed in order to determine the effect of partial or complete replacement of mixing water. The test specimens were further subjected to the effect of CO2 in the Lamart laboratory chamber, where the effect of CO2 was simulated for the period 50 years. Subsequently, the cement composites were tested for their strength characteristics (tensile flexural strength, compressive strength) and subjected to a mineralogical analysis. The results show that the effect of CO2 will reduce the strength characteristics of the composite compared to the comparative samples
    corecore